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Electrophysiological studies in rodents show that active navigation
enhances hippocampal theta oscillations (4–12 Hz), providing a
temporal framework for stimulus-related neural codes. Here we
show that active learning promotes a similar phase coding regime
in humans, although in a lower frequency range (3–8 Hz). We an-
alyzed intracranial electroencephalography (iEEG) from epilepsy
patients who studied images under either volitional or passive
learning conditions. Active learning increased memory perfor-
mance and hippocampal theta oscillations and promoted a more
accurate reactivation of stimulus-specific information during mem-
ory retrieval. Representational signals were clustered to opposite
phases of the theta cycle during encoding and retrieval. Critically,
during active but not passive learning, the temporal structure of
intracycle reactivations in theta reflected the semantic similarity of
stimuli, segregating conceptually similar items into more distant
theta phases. Taken together, these results demonstrate a multi-
layered mechanism by which active learning improves memory via
a phylogenetically old phase coding scheme.
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Volitionally controlled—or “active”—learning has become a
crucial topic in education, psychology, and neuroscience (1,

2). Behavioral studies show that memory benefits from voluntary
action (3–5), putatively through a distinct modulation of atten-
tion, motivation, and cognitive control (2, 6). While these func-
tions depend on widespread frontoparietal networks (7), a
critical role of the hippocampus in coordinating volitional
learning has been demonstrated in both humans (8) and rodents
(9) (for a review see ref. 10). However, the mechanisms by which
volition improves learning and memory are not well understood.
Rodent recordings suggest that hippocampal theta oscillations
(usually occurring between 4 and 12 Hz) might play a critical
role, because they increase during voluntary movement (11) and
active sensing (12). Consistently, human studies have shown
volition-related theta power increases, although in a lower fre-
quency range (typically between 3 and 8 Hz), during navigation
in virtual (13, 14) and physical (15, 16) environments. It is be-
lieved that theta oscillations facilitate mnemonic processing by
providing a temporal framework for the organization of
stimulus-related neural codes (17). This is observed in the phe-
nomenon of phase precession, where spatial locations repre-
sented by place cells in the rodent hippocampus are sequentially
reactivated at distinct phases of theta oscillations (18). A similar
phase coding mechanism underlies the representation of possible
future scenarios in rats performing a spatial decision-making
task, with early and late hippocampal theta phases represent-
ing current and prospective scenarios, respectively (19). It has
been proposed (17) that these forms of neural phase coding
support a range of cognitive processes, including multi-item

working memory (20), episodic memory (21, 22), and mental
time travel (23). In humans, this proposal has received empirical
support from phase-amplitude coupling studies looking at the
relationship between the amplitude of high-frequency activity
and the phase of activity at a lower frequency, in particular theta
(24–26). However, these analyses are agnostic to the specific
content that is coupled to the theta phase and thus do not reflect
“phase coding” in the narrower sense. Recent studies used
multivariate analysis techniques to identify stimulus-specific
representational signals at the high temporal resolution pro-
vided by human intracranial electroencephalography data
(iEEG, see refs. 27, 28 for review). These analyses demonstrated
the relevance of theta oscillations for hippocampal reinstatement
of item-context associations (29), for the orchestration of
content-specific representations of goal locations (30), and for
word-object associations (31). However, it is unclear whether this
mechanism is recruited when learning is volitionally controlled.
Building on these empirical findings and methodological ad-

vances, we aimed to elucidate whether the improved memory
performance typically observed in human active learning para-
digms can be traced back to a hippocampal theta phase code. In
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particular, we hypothesized that during active learning, this theta
phase code organizes and structures stimulus-specific memory
representations. We analyzed electrophysiological activity from
the hippocampus and widespread neocortical regions in epilepsy
patients (n = 13, age = 33.5 ± 9.32) implanted with iEEG
electrodes (total number of electrodes = 392; Fig. 1F) who
performed a virtual reality (VR)-based navigation and memory
task. Subjects navigated in a square virtual arena (Fig. 1A) and
were asked to remember images of specific objects presented at
distinct spatial locations indicated by red “boxes” located on the
ground (Fig. 1B). Images were only visible when participants
visited the red boxes and were hidden otherwise. Navigation
occurred under two conditions: active (A) and passive (P)
(Fig. 1B). In the active condition, participants could freely con-
trol their movements in visiting the stimulus sites while in the
passive condition, they were exposed to the navigation path and
order of image presentation generated by another participant
(yoked design; Fig. 1 C and D). At the end of the experiment, the
recognition memory for both the actively and passively learned
items was tested (Fig. 1E). We predicted that active learning
would enhance memory by promoting hippocampal theta phase
coding of stimulus-specific memory representations.

Results
Active Learning Improves Memory Formation. Across all trials,
participants showed a recognition performance of over 80%
correct [mean area under the curve: 0.822 ± 0.026, chance level
0.5; W(12) = 91, P = 0.0002; Fig. 1G], which was also reflected in
their declared confidence [high vs. low confidence trials:
W(12) = 91, P = 0.0002, Fig. 1H]. Target items were recognized
better when they were encoded during active as compared to
passive learning conditions [proportion of remembered items:
active, 0.8 ± 0.15; passive, 0.65 ± 0.24; W(12) = 74, P = 0.048; 10
out of 13 participants performed better in the active than in the
passive condition; Fig. 1 I, Left]. The proportion of high confi-
dence remembered items differed even more strongly [active,
0.66 ± 0.23; passive, 0.51 ± 0.29; W(12) = 79.5, P = 0.017; 11 out
of 13 participants performed better in the active vs. passive
condition, Fig. 1 I, Right]. This was consistent with the perfor-
mance of a group of healthy subjects (n = 23) following the same
paradigm, indicating equivalent enhancement of memory by
volition in patients and healthy controls (SI Appendix, Fig. S1).

Active Learning Increases Hippocampal Theta Oscillations. Visual
inspection of random samples of hippocampal iEEG traces
revealed the presence of prominent low-frequency oscillations

Fig. 1. Experimental procedure, electrode implantation, and behavioral results. (A) Participants studied images presented at specific locations, indicated by
red boxes located on the ground, in a square virtual environment (here shown from a bird’s eye perspective). (B) Stimulus presentation during the encoding
phase of the experiment as seen by a participant. (C) Schematic timeline showing the main blocks of the experiment (A = active, P = passive, counter-
balanced). (D) Detailed timeline of an example-encoding block. Participants freely determined the timings and materials of study in the active condition and
were exposed to the trajectory of a different subject in the passive condition. (E) Timeline of the experiment at retrieval. (F) All electrodes included in the
analyses (n = 392, MNI space), color coded by participant identity. (G) Receiver operating characteristic (ROC) curves for each subject (gray) and grand average
(red). (H) Proportion of correct items for all stimuli as a function of confidence. (I) Proportion of remembered items (Left) and of high-confidence remembered
items (Right) for active and passive conditions. *P < 0.05; ***P < 0.001.
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during active learning (see Fig. 2A for examples from one par-
ticipant and SI Appendix, Fig. S2 for further examples). We
quantified the differences in oscillatory power during the
encoding phase of our experiment while subjects either con-
trolled their actions in the environment (active condition) or
were exposed to the trajectory generated by another participant
(passive condition). We observed a significant effect of volition
on power in the theta band [p(corrected) = 0.019, Fig. 2B], while
the other bands did not reach significance even at an uncorrected
level. Similar results were obtained when we restricted the
analysis to the time interval containing item-specific information
at encoding [see next section; 250–850 ms; p(corrected) = 0.018;
Fig. 2C]. No significant differences in theta power were observed
during retrieval of actively vs. passively encoded items [W(8) = 13,
P = 0.3]. Together, these results show that active learning enhances
hippocampal theta oscillations.

Active Learning Increases Item-Specific Memory Reinstatement.
Next, we investigated whether active learning affects the preci-
sion of item-specific memory reinstatement. To this end, we
calculated the similarity between distributed patterns of oscilla-
tory power across all electrodes, frequencies, and time win-
dows. This was done in overlapping time windows of 500 ms,

incrementing in steps of 50 ms, for all pairs of encoding and
retrieval events (“encoding retrieval similarity” [ERS]; Fig. 3A;
Materials and Methods). In line with previous work (32–34), we
found that ERS was significantly higher when the same item was
encoded and retrieved as compared to when one item was
encoded and a different item retrieved, indicating reinstatement
of stimulus-specific representations [p(corrected) = 0.032, Fig. 3 B
and C]. This effect could not be explained by semantic similar-
ities among items (SI Appendix, Fig. S3). Item-specific ERS
started at ∼200 ms after stimulus onset and lasted until ∼800 ms
during encoding and retrieval. Importantly, ERS values were
higher for items remembered with high confidence as compared
to forgotten items within this temporal region of interest [tROI;
W(12) = 75, P = 0.039, Fig. 3D], suggesting that they reflect a
functionally relevant process. ERS analysis in the subsets of ac-
tive and passive trials revealed that item-specific information
could be extracted in both conditions (SI Appendix, Fig. S4).
Critically, however, ERS values were higher in active vs. passive
trials [W(12) = 86, P = 0.002, Fig. 3D and SI Appendix, Fig. S5],
and specifically in active trials remembered with high confidence
vs. active forgotten trials [W(8) = 41, P = 0.027, Fig. 3D and SI
Appendix, Fig. S6]. These results indicate that stimulus-specific
neural representations are reactivated during successful memory

Fig. 2. Active learning increases hippocampal theta oscillations. (A) MNI locations of all contacts used in the hippocampal analysis (one per subject, n = 9,
Left). (Right) Example hippocampal traces during active (Top) and passive (Bottom) navigation in one participant, showing a predominance of low-frequency
oscillations during active learning (for additional examples, see SI Appendix, Fig. S2). (B) Z-scored power differences for all frequencies in the 1- to 150-Hz
spectrum (Top) and across six frequency bands (Bottom), showing significantly higher power in the theta band during active vs. passive learning. (C) Z-scored
power for the active and passive learning conditions during encoding for the interval of significant item-specific encoding retrieval similarity (ERS; 250–850 ms
after cue onset). *, p(corrected) < 0.05.
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retrieval, and that the fidelity of this reactivation is increased by
volitional learning.

Frequency-Dependent Signatures of Memory Reinstatement. Our
results so far indicate that active learning increased hippocampal
theta oscillations and enhanced the brain-wide reactivation of
stimulus-specific information. We next investigated whether
these two phenomena are interrelated. Previous research has
linked the role of hippocampal theta oscillations to the coordi-
nation of item-specific representations rather than to these
representations themselves (8, 29). We therefore evaluated
whether theta oscillations contributed to the whole-brain rep-
resentational patterns we measured during memory retrieval. To
this end, we removed activity in the theta band from all elec-
trodes and recalculated item-specific reinstatement. We still
found a significant ERS cluster around the same time as in the
broadband analysis [p(corrected) = 0.029, Fig. 4A, Top row]. Fur-
thermore, the mean ERS values in the original cluster did not
change significantly when excluding the theta frequency band
[W(12) = 55, P = 0.54, Fig. 4B]. Finally, when ERS was calcu-
lated with information carried only in the theta band, no sig-
nificant ERS clusters were found (all P > 0.503, Fig. 4A, Bottom
row). These results show that item-specific representations do
not prominently rely on oscillatory power in the theta frequency
range.
To further assess the relevance of specific frequencies to ERS,

we correlated the stimulus-induced power changes at each
electrode (averaged across trials) during both encoding and re-
trieval, with the contribution of every electrode to item-specific
memory reinstatement (i.e., ERS; Materials and Methods). This
was done for a broad range of frequencies, because previous
studies suggest that fluctuations in various frequencies may re-
flect the fidelity of stimulus-specific representations (29, 35, 36).

At encoding, we observed a significant correlation between
stimulus-induced theta (3–8 Hz) power increases and the con-
tribution of individual electrodes to ERS [p(corrected) = 0.028;
other frequencies: all p(corrected) > 0.21, Fig. 4 C, Left]. At re-
trieval, electrode-wise gamma power increases (75–120 Hz) were
positively correlated to the contribution of electrodes to ERS
[p(corrected) = 0.014; cluster-based permutation test, Materials and
Methods, Fig. 4 C, Right]. We also observed a negative correlation
of beta activity during retrieval and ERS [13–21 Hz; p(corrected) =
0.019, Fig. 4 C, Right].
In summary, these results indicate that electrodes showing

pronounced increases of theta power at encoding and gamma
power at retrieval, and decreases of beta power at retrieval, con-
tribute most prominently to item-specific reinstatement. Thus,
while the brain-wide representations themselves do not rely on
theta oscillations, they are dependent on electrodes showing local
theta, beta, and gamma effects.

Theta Phase Clustering of Stimulus-Specific Reactivations during
Memory Retrieval. A critical question arising from the results
presented so far is how hippocampal theta oscillations are
mechanistically related to the enhancement of memory perfor-
mance observed during volitional learning—particularly given
that they are not involved in the representation of item-specific
information. Since numerous studies in rodents suggest that
theta oscillations modulate encoding and retrieval processes (37,
38) and provide a temporal scaffold for phase coding (17, 18), we
tested whether similar effects also occur in the human brain. We
first investigated whether hippocampal theta phases during
encoding and retrieval distinctly modulate ERS. We then asked
whether theta oscillations organize the reinstatement of episodic
memories according to their representational content.

Fig. 3. Active learning increases item-specific reinstatement. (A) ERS was calculated using Spearman’s correlation (rho) across electrodes, time windows, and
frequencies. (B) Grand average reinstatement maps for same and different item conditions. (C) T map of the corresponding contrast in B shows item-specific
reinstatement from ∼200 ms to ∼800 ms at both encoding and retrieval (outlined in black; only clusters surviving multiple comparisons corrections are shown).
(D) Reinstatement of item-specific features is higher for items presented in the active condition and for those remembered with high confidence. Depicted are
mean ERS values within the item-specific cluster in C for relevant conditions. *P < 0.05; **P < 0.01.
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For both analyses, we recalculated ERS at an increased tem-
poral resolution (using nonoverlapping windows of 10 ms) and
extracted the instantaneous phases of hippocampal 3- to 8-Hz
oscillations (Figs. 5A and 6A, Left). In our first analysis, we es-
timated the theta phase specificity of ERS: We calculated how
ERS values changed when information in specific theta phase
bins was selectively removed. We considered 20 nonoverlapping
phase bins of 18° across the full 360° theta cycle during both
encoding and retrieval (Fig. 5A and Materials and Methods).
During retrieval, removing activity patterns during seven bins

between 198° and 324° degrees (corresponding to the rising
phase of the oscillation) significantly reduced ERS [p(corrected) =
0.027]. Removal of activity at other phase bins did not have an
effect (all bins: P > 0.9; Fig. 5 B, Top). These reductions were not
dependent on activity at hippocampal channels, as they still oc-
curred when ERS was calculated without hippocampal elec-
trodes [W(8) = 45, P = 0.0039].
During encoding, no significant relationship between item-

specific activity and individual theta phases was found. How-
ever, ERS reductions were most pronounced when activity was
removed at phases that were opposite to those observed during

retrieval [angular mean difference = 160.2°, F(8) = 6.3, P =
0.0084; Fig. 5B].
To test for a possible interaction between theta phase and

encoding vs. retrieval, we built a two-way repeated-measures
ANOVA with “theta phase” (20 bins) and “memory stage”
(encoding vs. retrieval) as factors. This revealed a significant
interaction [F(2, 8) = 1.97, P = 0.01]. To study the influence of
volition on the phase of pattern reactivation, we tested whether
active and passive phase-ERS distributions differed significantly
in their angular means. We found a marked difference at re-
trieval [angular mean active: 228.3°, angular mean passive: 281°;
F(8) = 11.3, P = 0.0007], while this was not the case at encoding
[F(8) = 0.18, P = 0.83]. For both active and passive trials, phase-
ERS distributions at encoding and retrieval showed different
angular means [active encoding vs. active retrieval: F(8) = 10.7,
P = 0.0008; passive encoding vs. passive retrieval: F(8) =
7.9 P = 0.003].
Together, these results demonstrate that item-specific rein-

statement during retrieval relies on activity at distinct phases of
hippocampal theta oscillations. They further show that these
relevant theta phases are significantly shifted when information
has been encoded volitionally.

Fig. 4. Frequency profile of item-specific reinstatement. (A) Reinstatement analysis after the exclusion of information carried in the theta band revealed a
cluster of significant increases in ERS for same as compared to different items, from ∼200 to ∼750 ms (outlined in black, Top row). Analysis performed with
information carried only in the theta band did not show any significant cluster of item-specific ERS (Bottom row). (B) ERS values in the item-specific rein-
statement cluster did not drop significantly after excluding theta. (C) Correlations between stimulus-related power increases at each electrode and the
contribution of these electrodes to stimulus-specific representations were significant in theta (3–8 Hz) at encoding, and in beta (13–21 Hz) and gamma
(75–120 Hz) at retrieval. Only clusters surviving multiple comparisons corrections at P < 0.05 are shown in A. *P < 0.05.
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Hippocampal Phase Coding of Semantic Information during Active
Learning. Finally, we investigated whether hippocampal theta
oscillations provide a temporal scaffold for phase coding during
memory reinstatement, i.e., whether stimulus-specific memory
reactivations are arranged at specific theta phases according to
their content. Since the stimuli used in our study consisted of line
drawings with only a few perceptual details, we focused on the
semantic content of these items. We built distributions of ERS
values along theta phase for each trial (Fig. 6A) and calculated
the circular correlation between all stimulus pairs (Fig. 6 B,
Lower matrices). In addition, we used a word2vec model (39, 40)
to quantify the semantic proximity between all pairs of items
(Fig. 6 B, Upper matrices). Comparing these two measures
revealed that semantic similarity between pairs of items was
expressed in their time of reactivation along hippocampal theta
phase: Conceptually similar items were systematically segregated
into more distant phases (P = 0.006, Fig. 6 C, Left). This effect
was most prominent during the time period when the neural
representation of items was reinstated (∼200–800 ms), but was
robust to various factors including the specific time period of
interest (0–1 s after cue onset, P = 0.006), the number of phase
bins used in the analysis (8 bins: P = 0.009, 20 bins: P = 0.042)
and the specific distance metric employed (Kullback–Leibler
distance instead of circular correlation: P = 0.019). The effect
remained when we removed hippocampal channels from the
analysis of ERS (P = 0.008) and also when we averaged across
revisits before constructing phase-ERS distributions (P = 0.009).

As expected, given that the ERS representational signal is based
on encoding retrieval correlations, the effect was not observed
during encoding (P = 0.65).
To examine whether this phase coding mechanism is modu-

lated by volition, we performed the same analysis separately for
active and passive trials. Phase-ERS distributions were signifi-
cantly shaped by semantic similarity for actively learned items
(P = 0.035, Fig. 6 C, Middle). This was not the case in passive
trials (P = 1, Fig. 6 C, Right). Together, these results show that
the phase-based distance of the neural signatures of memories
negatively correlates with their semantic similarity. They further
demonstrate the critical role of volition in promoting this form of
phase coding.

Discussion
Building on the observation in rodents that active navigation
enhances hippocampal theta oscillations and promotes phase
coding of information, we investigated how volition affects mne-
monic processes in the human brain. By measuring iEEG from
epilepsy patients, we observed that active learning increased hip-
pocampal theta oscillations and item-specific memory reinstate-
ment, promoting a distinct organization of memory representations
along the phase of hippocampal theta oscillations that mapped the
semantic relations among stimuli and maximally segregated
encoding and retrieval epochs. These results demonstrate a volition-
mediated phase code relying on hippocampal theta oscillations that

Fig. 5. Theta phase clustering of item-specific memory reinstatement. (A) Information at distinct hippocampal theta phases was removed from ERS vectors
(separately at encoding and retrieval, Left), and ERS reductions were calculated for each phase bin (different shades of blue represent different phase bins;
Right). (B) Clustering of ERS signals carrying item-specific information at encoding (Left) and retrieval (Right) for all trials (Top) and separately for active and
passive learning conditions (Bottom). Associated Inset figure in the retrieval panel shows the corresponding generated null hypothesis distribution and
observed t value (blue line). Red line in polar plots of B indicates the angular means of the corresponding distributions. *, significant phase bins that survive
multiple comparisons correction at P < 0.05.
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coordinates and structures brain-wide representational signals dur-
ing episodic memory.
Our finding that active learning promotes hippocampal theta

oscillations constitutes a bridge between long-standing experi-
mental results in the rodent literature and research on human
memory. While animal studies reported hippocampal theta
power increases during voluntary action (11, 12, 41, 42), this
phenomenon has not been established in humans. Previous work
demonstrated that hippocampal blood oxygen level-dependent

(BOLD) responses track the activity of a brain-wide network
underlying volitional learning (8), and that theta power captured
at numerous magnetoencephalography (MEG) sensors corre-
lates with self-directed learning and spatial memory (13). De-
spite these relevant empirical findings, the use of functional
magnetic resonance imaging (fMRI) in previous studies (8) does
not allow for a precise characterization of hippocampal oscilla-
tory dynamics, and MEG source localization (13) provides only
indirect access to the hippocampus. Our data critically complement

Fig. 6. Active learning promotes hippocampal phase coding of semantic information. (A) Analysis strategy. Hippocampal traces were filtered at 3–8 Hz and
instantaneous phases were extracted via a Hilbert transform (Left, Top row). ERS values were sorted depending on the concurrent hippocampal phases (Left,
Bottom row). Single trial phase-ERS distributions were computed (10 equally sized bins covering the full cycle; different shades of blue represent different
phase bins; Right). (B) Pair-wise correlations between word2vec vector representations (Top) and phase-ERS distributions (Bottom) were calculated for each
subject (three examples are shown). Note that by design each participant encoded a different set of images. (C) Phase-ERS and word2vec semantic similarities
were compared using Spearman’s rho. The difference between group-level t values and the permutation-based null distribution shows a systematic rela-
tionship for active but not for passive trials. Circular correlation values in B and rho values in C were sign changed for visualization. *P < 0.05; **P < 0.01.
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these previous results by showing an effect of active learning on
hippocampal theta oscillations.
Our results on memory reinstatement are consistent with a

growing body of research which has shown that remembering an
episode requires the reinstatement of a dynamic oscillatory state
in the brain, the “neural fingerprint” of a specific experience (29,
32–34). In addition to replicating the finding of behaviorally
relevant item-specific reinstatement (29, 34), our results show
that ERS can be actively increased by volitional control over
learning (Fig. 3C). The use of time-resolved representational
signals in our encoding retrieval similarity analyses further
allowed us to evaluate phase coding without having to assume
that high-frequency activity is a proxy for the representation of
specific content, extending previous studies (20, 25, 26).
Our analyses based on hippocampal theta phase revealed a

twofold mechanism that simultaneously segregates semantic
similarities of item representations and defines optimal oscilla-
tory phases for their encoding and retrieval. Similar phenomena
of theta phase coding have been previously reported in rodents
and humans. For instance, the firing of hippocampal place cells
is sequentially organized along the theta cycle during spatial
navigation in rats (18). While such phase precession reflects
physical proximity, our data show that theta phase-locked activity
can also represent more abstract semantic information in hu-
mans. This is consistent with recent studies revealing task-
dependent phase coding of varied neural representations in the
hippocampus, including sequence learning of letters in working
memory (20) and images in an episodic memory paradigm (21).
A recent study demonstrated that representations of similar goal
locations are locked to more distant hippocampal theta phases
during virtual navigation (30), consistent with our finding of
phase-based segregation of semantically similar items. This
multitude of representational contents across experimental par-
adigms suggests a generic phase coding mechanism relying on
mixed selectivity of hippocampal neurons (43, 44) that can be
flexibly mapped onto different variables depending on task de-
mands. Critically, our findings reveal the coexistence of two
complementary systems for the representation of item-specific
and semantic information during episodic memory retrieval:
While distributed oscillatory patterns support the representation
of individual items, the temporal structure of these signals is
defined by a hippocampal theta phase code that preserves their
semantic relations. The simultaneous expression of semantic and
episodic memory codes might benefit memory by facilitating the
accessibility of information according to task demands and en-
abling the integration of novel information into hierarchically
organized mental schemas (45).
Beyond structuring stimulus-specific ERS dynamics, our data

suggest that theta oscillations comprise two separate time win-
dows for encoding and retrieval, in line with theoretical predic-
tions (38) and recent experimental data in rodents (37) and
humans (31). While our data seem consistent with these
observations—ERS reductions at encoding occurred 160° away
from those observed at retrieval—we note that the reductions at
encoding did not reach statistical significance after stringent
correction for multiple comparisons. Critically, our results
revealed a difference in the angular means of active and passive
conditions at retrieval, suggesting that volition induced the use of
different theta slots for processing information under these two
learning modes in addition to the overall encoding retrieval
modulation.
Our results demonstrate simultaneous phase coding and phase

clustering of ERS signals, i.e., segregation of mnemonic repre-
sentations according to both their semantic content and their
information processing mode (encoding or retrieval). We note
that these phenomena have been reported at different temporal
resolutions (i.e., with theta phase “slots” of varying length). In
phase precession, for instance, the timing of unit firing is seen as

a continuous variable that occurs across the entire theta cycle
(18), while the standard view of phase coding during working
memory assumes a maximal number of nested gamma cycles
within a theta cycle reflecting memory capacity (46). Other
studies have shown a distinction between early and late theta
phases for representing current and alternative scenarios, re-
spectively (19). The theory of an “optimal” oscillatory phase for
encoding and retrieval, on the other hand, suggests a rather bi-
nary allocation of theta phase windows for these two information
processing modes (38). Consistently, we observed a relatively
large phase window of 126° reflecting the rising phase of the
oscillation that was critically important for memory reactivations
during retrieval. While phase clustering might reflect a general
information processing mode requiring more extended theta
slots for encoding and retrieval, phase coding might need a
higher temporal resolution to structure high-level conceptual
information. The cooccurrence of these mechanisms neverthe-
less suggests a multilayered system for efficient mnemonic pro-
cessing supported by hippocampal theta oscillations, in which
neural representations can be temporally assigned to distinct
oscillatory phases of varying length according to their content,
memory function (encoding vs. retrieval), and degree of voli-
tional control (active or passive).
Our findings suggest that hippocampal signals do not play a

key role in the representation of specific content, but rather
coordinate item-specific representational patterns. Indeed, when
ERS was calculated after removing hippocampal channels, no
significant reductions in item-specific activity were observed (SI
Appendix, Fig. S7). However, hippocampal theta oscillations fa-
cilitated the retrieval of item-specific information by providing a
temporal scaffold for their representation, as our phase cluster-
ing (Fig. 5) and phase coding (Fig. 6) results demonstrated.
Together, our data support a view of hippocampal theta as an
evolutionary old navigational signal that evolved to support
“navigation” in abstract and cognitive spaces (47, 48). We note
though that the frequency range of human hippocampal theta
(3–8 Hz) differs from the band typically reported in rodents
(4–12 Hz), and appears to coordinate a semantic space following
a more complex metric than space alone (11, 12).
We further investigated whether oscillatory power at individ-

ual electrodes reflected the relevance of these electrodes to item-
specific representations. During encoding, electrodes with higher
theta power contributed more to global representational pat-
terns, even though these patterns did not rely on the amount of
theta power in these electrodes (Fig. 4). During retrieval, elec-
trodes with low beta and high gamma power were most relevant
for item-specific reinstatement. These findings add to studies
that recently tracked the frequency profile of reinstatement in
the human brain, reporting beta and gamma power decreases
(34, 35), together with increased high gamma (36) and “ripple”
activity (33), as markers of the fidelity of stimulus-specific
memory representations.
We note that the concept of “active learning” involves a

multitude of interrelated cognitive functions including (but not
limited to) decision making, active sampling, and exploration. In
our operationalization of active learning, we chose a rather
broad and naturalistic approach that aimed to optimize ecolog-
ical validity at the expense of reduced control over individual
cognitive variables. Possibly, such broad and flexible deployment
of several intertwined cognitive processes is critical to engage the
fine-grained mechanisms of phase coding and item-specific re-
instatement that we found for actively learned items. Future
studies will need to disentangle the contributions of these indi-
vidual components of active learning. At the same time, further
investigations using ecologically valid methods such as portable
iEEG/MEG, eye tracking, or immersive virtual reality will be
required to bridge the gap between an understanding of active

8 of 12 | PNAS Pacheco Estefan et al.
https://doi.org/10.1073/pnas.2021238118 Volitional learning promotes theta phase coding in the human hippocampus

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 N
ov

em
be

r 
29

, 2
02

1 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2021238118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2021238118/-/DCSupplemental
https://doi.org/10.1073/pnas.2021238118


www.manaraa.com

learning at the level of neurocognitive mechanisms and its
practical application, e.g., in the context of education.
Single-unit studies revealed the importance of the time of

firing with respect to hippocampal theta phase for memory
processes (49) and their tuning to abstract representations irre-
spective of perceptual modalities (i.e., so-called “concept cells”)
(50). To our knowledge, no previous study has linked these two
seemingly unrelated processes. We here provide evidence for a
temporal organization of electrophysiological patterns that rep-
resent specific stimuli according to their semantic content. Our
results describe a multiscale mnemonic phase code across the
hippocampus and neocortex that links volition, item-specific and
semantic representations, and the process of episodic memory.

Materials and Methods
Participants. Thirteen epilepsy patients (7 males, age = 33.5 ± 9.32) implanted
with depth electrodes as part of their diagnostic assessment for medically
refractory epilepsy participated in our experiment. Patients’ demographic
and clinical data are presented in SI Appendix, Table S1. The same paradigm
was also conducted with a group of n = 23 healthy controls (17 males, age =
26.66 ± 9.62), who were students from the Universitat Pompeu Fabra (Bar-
celona, Spain). The study was approved by the local ethics committee,
“Clinical Research Ethical Committee (CEIC) Parc de Salut Mar.” Participants
provided written informed consent to participate in the experiment.

Task Description. Subjects navigated a squared virtual environment in which
images (see ref. 51) were presented at specific vertices of a 5 × 5 grid formed
by red boxes located on the ground (Fig. 1 A and B). An item was presented
at each box during navigation through a small inset on the top-right corner
of the screen (Fig. 1B). The item remained visible until participants moved to
another box. Participants were instructed to visit all boxes and remember all
items for a subsequent recognition memory test.

Subjects explored the environment under two conditions, one with self-
initiated, active control of movement (active) and the other via passive ex-
posure and no control over navigation (passive). The navigation sequence in
passive blocks—including trajectory information and items explored—was
taken from the active mode of a matched pair from either our group of
patients or from the healthy subjects control group, following a “yoked”
design (Fig. 1 C and D).

Each subject performed three active and three passive navigation blocks.
The order of the blocks was predefined, starting either with active or passive
and then alternating. The starting block was counterbalanced across subjects:
In total, eight patients started with the active block (A-P-A-P-A-P) and five
with the passive block (P-A-P-A-P-A). The first subject in our study performed
a shorter version of the task, with two active and two passive blocks instead
of three.

Navigation blocks lasted for 3 min, with a 20-s pause after each block
(Fig. 1C). The positions at the start of each active block were randomly se-
lected from four possible predefined starting points covering four equally
sized quadrants in the environment.

After the navigation period, subjects were tested for their memory using a
recognition test (Fig. 1E). An image was displayed on the screen and subjects
were asked to indicate whether they had seen it before using a confidence
scale from 1 (sure new) to 6 (sure old, Fig. 1E). The confidence question (and
the image) remained visible until participants gave a response, followed by
an intertrial interval of 3 s.

Patients performed the experiment while sitting in their hospital beds
using a 17-inch portable computer placed on a mobile tabletop. In the active
condition, they controlled navigation with a joystick. The VR application was
created with the Unity3D Game Engine.

Electrophysiological Recordings. Recordings were performed using a standard
clinical EEG system (XLTEK, subsidiary of NatusMedical) with 500-Hz sampling
rate. Dixi Médical electrodes (diameter: 0.8 mm; 5–15 contacts, 2 mm long,
1.5 mm apart) were stereotactically implanted using robotic guidance
(ROSA, Medtech Surgical Inc.).

Electrode Selection. The presence of electrodes within the anterior hippo-
campus was confirmed via careful examination of the magnetic resonance
imaging (MRI) and computed tomography (CT) scans with the help of our
clinical team at the Hospital del Mar (Barcelona, Spain). Eleven out of 13
participants had at least one anterior hippocampal contact (range, 1–3
contacts). However, 2 of these 11 participants had to be excluded from the

hippocampal analyses because the seizure onset zone was found in the
anterior hippocampus. We selected the most distal anterior hippocampal
contact when more than one was available in each subject.

Electrode locations in native space were determined using FreeSurfer (52)
and converted to Montreal Neurological Institute (MNI) coordinates using
the pipeline described in ref. 53. Only electrodes located in gray matter were
included in the multielectrode (global) ERS analyses (see below). A full list of
electrodes used and their MNI coordinates is provided in Dataset S1.

Artifact Rejection and Data Preprocessing. Before performing the artifact
rejection, we removed all channels whichwere identified as the epileptogenic
seizure onset zone (SOZ) by our clinical team, leaving 392 contacts that could
be used for analyses (per patient ranging from 16 to 62 contacts). Artifact
rejection on the remaining channels was then performed in two steps. We
first applied an automatic procedure in which we automatically removed
values beyond 5 SDs from the channel-specific mean (data from the full
experiment) in both amplitude and gradient. We then epoched the data
from −500 ms to 1.5 s after stimulus onset (mean exposure time to stimulus
during encoding across all subjects = 1.44 s, SD = 0.35) and plotted event-
related spectral perturbations (ERSPs) from all trials to evaluate the possible
presence of noise in the time-frequency domain. Noisy trials were excluded
by visual artifact rejection. This was done blindly with respect to the con-
ditions of the experiment. In addition, all trials with an exposure time at
encoding or a response time at retrieval of less than 200 ms or above 5 SD of
the subject-specific mean were excluded. Data from rejected epochs was not
only removed from the trial-based analysis but also from the analysis in-
volving navigation blocks.

In total, this resulted in the following total number of trials in each
condition: Item-specific analysis: 125.6 ± 47.7, volitional condition: 65.1 ±
30.7, passive condition: 60.4 ± 22.3, high confidence remembered condition:
82.76 ± 49.2, forgotten condition: 24.3 ± 13.6. The total number of trials in
the item-specific ERS analysis after averaging revisits was 59.3 ± 12.9. For the
phase coding analysis, an average of 2.55 ± 1.55 items of the labels provided
in our stimulus set were not available in the word2vec embeddings (see
below). Those were excluded from this specific analysis.

After artifact rejection, we band-pass filtered the signal at the selected
electrodes from 1 to 200 Hz using a Hamming-windowed sinc finite impulse
response filter (eegfiltnew.m from the EEGLAB toolbox) (54), and rerefer-
enced the data to bipolar references before performing subsequent analy-
ses. Bipolar referencing was done by subtracting the activity of one channel
with that from the nearest channel of the same electrode, leading to a total
of N-1 virtual contacts for an electrode with N contact points.

Hippocampal Power Analysis. We quantified hippocampal low-frequency
power during the encoding phase of our experiment in the active and the
passive navigation condition. Using the FieldTrip toolbox (55), we decom-
posed the signal during the whole experiment via complex Morlet wavelets
with a variable number of cycles, linearly increasing between 3 cycles (at
1 Hz) to 6 cycles (at 29 Hz) in 29 steps for the low-frequency range, and from
6 cycles (at 30 Hz) to 12 cycles (at 150 Hz) in 25 steps for the high-frequency
range. The resulting time series were Z-scored by taking the mean and SD of
each frequency independently during all navigation blocks combined (three
active and three passive).

We also analyzed differences in hippocampal theta power during retrieval
of items that were encoded either actively or passively. We used the same
parameters for time-frequency decomposition as in the encoding analysis,
but retrieval trials were Z-scored to the concatenated activity of all periods
of item-specific ERS (one per trial) combined.

We corrected all results on hippocampal theta oscillations presented in
Fig. 2 for multiple comparisons using the Bonferroni method. Given that we
tested six different frequency bands, we only considered P values significant
that were below an alpha of 0.05/6.

Multielectrode (Global) ERS Analysis. We quantified the similarity of neural
representations during encoding and retrieval by comparing epochs of brain
activity across all available electrodes of each subject (56). We first calculated
oscillatory power between 1 and 150 Hz for each trial using the same pa-
rameters as in the hippocampal power analysis (Morlet wavelets, 1-Hz steps
from 1 to 29 Hz, 5-Hz steps from 30 to 150 Hz). We Z-scored the power time
series in each trial by taking as a reference the activity of a period of −2 s
before stimulus onset until 2 s after stimulus onset. Subsequently we
extracted power values at 10 time points in windows of 500 ms (50-ms steps),
starting at −500 ms and until 1.5 s after cue presentation. Consecutive
windows incremented in steps of 50 ms. Similar to previous studies (32, 36),
we calculated Spearman’s correlations of broadband (1–150 Hz) oscillatory
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patterns of activity across time, frequencies, and electrodes, resulting in a
global measure of ranked similarity between encoding and retrieval (ERS). A
representational feature vector therefore consisted of concatenated power
values of 54 (frequencies) × 10 (time points) × n (subject-specific number of
electrodes). Control analyses confirmed that similar results were obtained
when feature vectors contained only information across frequencies and
electrodes (i.e., not across time courses; see SI Appendix, Fig. S8).

We compared these feature vectors during all encoding and retrieval time
windows using Spearman’s rho (29, 34). Rho values at each time step were
Fisher z-transformed for statistical comparisons. This resulted in an encod-
ing × retrieval reinstatement map for each trial and subject, including both
nonlagged (on-diagonal) and lagged (off-diagonal) correlations (Fig. 3B).
These maps were subsequently contrasted via paired t tests across
experimental conditions (Fig. 3C).

To assess a possible role of theta oscillations (3–8 Hz) as features in ERS, we
performed the same multielectrode ERS analysis either with all frequencies
except the theta band (Fig. 4 A, Top) or by excluding all frequencies except
theta (Fig. 4 A, Bottom).

ERS Contrast Analyses. To identify stimulus-specific reinstatement, we com-
pared encoding retrieval similarity of each item with the similarity between
encoding of one item and retrieval of different items. Given that our experi-
ment allowed participants to freely explore the items (in the active condition),
some images were visited repeatedly. In these cases, each instance was con-
sidered separately, i.e., we correlated encoding activity of each visit of an item
with the activity during retrieval of that item and counted them as “same
item” correlations. Similar results were obtained when we averaged encoding
activity across revisits before performing the ERS analysis (SI Appendix, Fig. S9).
We randomly selected 1,000 instances of correlations between encoding of
one item and retrieval of a different item in each subject. Alternatively, we
matched the number of trials in the “different item” condition to that of the
same item condition for each subject independently by randomly sampling
from all possible combinations of items and averaging the results 100 times.
This control rendered equivalent results. We calculated ERS for all selected
pairs of same and different items across all time points and trials for each
subject before performing statistical analyses at the group level.

To assess the behavioral relevance of stimulus-specific reactivations, we
compared ERS values of high-confidence remembered vs. forgotten trials in
a tROI defined by the results of the item-specific contrast (Fig. 3C; results in
this tROI were first averaged in each participant). We also explored ERS
differences between active and passive conditions using this approach
(Fig. 3D).

Electrode-Wise ERS Contribution/Power Correlation Analysis. We quantified
the relative contribution of each electrode to item reinstatement through a
jackknife procedure. Mean ERS was calculated across trials in the same
vs. different item cluster after excluding each electrode one by one (36).
The contribution of electrode j to the overall ERS was defined as:

pj = ERSall − ERSall−j
ERSall

, where ERSall−j is the averaged similarity value over

trials after leaving electrode j out and ERSall is the average ERS value over
trials with all electrodes included. These values were normalized for each
subject independently by subtracting from the contribution of each elec-
trode the value of the least contributing electrode and dividing the result by
the value of the most contributing electrode minus the value of the least

contributing electrode, as in: pnorm = P−Pmin
Pmax−Pmin

. This normalization results in

values between 0 and 1, where 0 corresponds to the least contributing
electrode and 1 to the most contributing electrode of each subject.

In addition, we identified electrodes that were activated by the task at
encoding using a previously described procedure (57). Power values at each
frequency and electrode were Z-scored relative to a bootstrapped baseline
period (−500 ms until item onset). The baseline was created by randomly
sampling one power estimate per trial from the prestimulus baseline period
and averaging the results. This was repeated 1,000 times, resulting in a
surrogate distribution of baseline power values. Poststimulus power values
(one value for every 50 ms) in each trial were Z-scored by taking as a ref-
erence the mean and SD of this bootstrapped distribution.

The mean Z-scored power values of each frequency during the first 500 ms
after cue onset at encoding and retrieval were correlated with the contri-
bution of each electrode to ERS (Fig. 4C). This correlation yielded one rho
value per subject reflecting the relationship between the activity of each
electrode and its contribution to the global ERS. These values were then
compared against chance (i.e., zero) at the group level to assess statistical
significance and corrected for multiple comparisons using cluster-based
permutation statistics (see below).

Phase Clustering Analysis. To study whether specific phases of the hippo-
campal theta oscillation are particularly relevant for memory reactivations,
we compared ERS with and without the values from individual phase bins
across different conditions (Fig. 5A). We extracted power values at each
electrode at an increased temporal resolution with respect to the main
analysis (i.e., 10 ms) and built representational feature vectors by averaging
frequency- and electrode-specific power values across consecutive time
windows of 500 ms (overlapping by 450 ms), after excluding phase infor-
mation of each specific bin of 18° (a total number of 20 bins) covering the
full cycle. We used a relatively large number of phase bins given the re-
quirements of cluster-based permutation statistics (see below). We did not
include time in the feature vectors because the time periods that corre-
sponded to the individual hippocampal theta phase bins were discontinu-
ous, and therefore a continuously evolving reinstatement of neural activity
time courses was not expected a priori. For each of these 500-ms time
windows, we thus obtained a two-dimensional representational pattern
composed of electrode x frequency values. We confirmed that we could
again find significant item-specific ERS as in the main time-resolved analysis
within this new tROI (SI Appendix, Fig. S8).

The contrast of same-item ERS vs. different-item ERS was then calculated,
including ERS values across the full theta cycle, from which we subtracted
ERS values from a single phase bin. This resulted in one averaged value of
ERS reduction for each participant and phase bin, reflecting the contribution
of that phase bin to the overall ERS effect. Statistical significance was
assessed with paired t tests against zero applied to each phase bin
(one-tailed tests were used given the hypothesis of increased ERS reduction
after the removal of information in specific phase bins). We corrected for
multiple comparisons using cluster-based permutation statistics (see below).

This analysis was first conducted separately for encoding and retrieval, and
then further split up into the active and the passive condition. For all the
encoding analyses, the encoding feature vector was modified according to
the values of the hippocampal theta phase at encoding while the retrieval
feature vector was left intact. The reverse was done in the retrieval analyses,
leaving the encoding vector unmodified. To evaluate differences in the
angular means of ERS reductions between encoding and retrieval, we applied
Hotelling tests (58).

Phase Coding Analyses. We investigated whether the semantic content of a
stimulus is encoded in the temporal relationship between the item-specific
reinstatement (i.e., ERS) of this stimulus and hippocampal theta phases. We
calculated a measure of representational similarity based on the semantic
labels provided in our line drawings dataset (51). These labels were com-
pared between all pairs of items using Google’s word2vec (40), a method for
generating vector representations of words which provides a pretrained set
of 300-dimensional embeddings based on a large Google News text corpus.
A semantic similarity measure was extracted for each pair of images by
correlating word2vec vector representations using Spearman’s rho. The
resulting confusion matrix was then correlated with neural similarity ma-
trices of phase-dependent reinstatement of stimulus-specific information
(Fig. 6B). To produce these neural similarity matrices, we first generated
representational feature vectors at increased temporal resolution as in the
phase clustering analysis (i.e., 10 ms) and band-pass filtered the hippocampal
activity between 3 and 8 Hz to extract a time series of instantaneous phases
using the Hilbert transform. The phase time series were then downsampled
to 100 Hz to match the temporal resolution of the ERS data (Fig. 6A). We
verified that we could still capture item-specific representations at this
temporal resolution (SI Appendix, Fig. S11), and then split the hippocampal
theta phase time series of each trial during the period of item reinstatement
(cluster defined in the main analysis, Fig. 3C) into 10 equally sized phase bins
of 36° each (31). Average ERS values from 1,000 draws in the different item
condition were subtracted from the same item condition at each trial, to
avoid any bias related to unspecific (i.e., not stimulus-specific) ERS. We then
calculated the mean ERS in each phase bin, resulting in one distribution of
item-specific ERS values across hippocampal theta phases for each trial. ERS
phase distributions were compared between all pairs of trials using the cir-
cular correlation from the CircStats toolbox (59). This was done separately
during encoding and retrieval, resulting in two neural similarity matrices in
each patient. We removed values on the diagonal of both matrices, to avoid
inflating results due to correlation values of 1 on the diagonal of the
word2vec matrix. We also excluded values at one side of the diagonal in
both matrices given their symmetry. Note that in the examples presented in
Fig. 6B circular correlation values were sign changed for visualization.

We correlated the semantic similarity matrix with the participant-wise
neural similarity matrix using Spearman’s rho. At the group level, the
resulting individual rho values were compared against chance, i.e., zero
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using a one-sample t test. Note that in the results presented in Fig. 6C,
resulting rho values were sign changed for visualization. Statistical signifi-
cance was assessed by randomly shuffling the labels of the neural and the
word2vec similarity matrices 1,000 times before correlating them and per-
forming the second-level statistics, resulting in a distribution of t values
under the null hypothesis of no phase-ERS relationship. We considered sig-
nificant an observed t value falling above the 95th percentile of this shuffled
distribution.

Several control analyses were performed to corroborate the results of the
phase coding analysis (SI Appendix, Supplementary Methods).

Multiple Comparisons Correction. We performed cluster-based permutation
statistics to correct for multiple comparisons in the main ERS analysis (Fig. 3),
in the electrode-wise ERS contribution/power correlation analysis (Fig. 4),
and in the phase clustering analysis (Fig. 5).

In the ERS analysis, we created a null distribution of ERS values by per-
muting the labels of the trials for each subject independently 1,000 times.
Paired t tests were then applied in sliding 500-ms windows with incremental
steps of 50 ms on the surrogate data (as for the empirical data). We iden-
tified clusters of contiguous significant time windows (corresponding to P
values <0.05) and selected the maximum cluster size of summed t values for
every permutation. This resulted in a distribution of surrogate t values for
every encoding time × retrieval time point under the assumption of the null
hypothesis. We only considered significant those contiguous encoding re-
trieval time pairs in the nonshuffled data whose summed t values exceeded
the summed t value of 95% of the distribution of surrogate clusters (cor-
responding to a corrected P < 0.05) (60).

In the analysis comparing the electrode-wise ERS contributions to
electrode-wise power, we used cluster statistics to correct for multiple
comparisons across frequencies (Fig. 4). We shuffled the assignment of

electrode identity for power and for electrode contribution to ERS 1,000
times. We identified in each permutation the largest cluster of contiguous
frequencies that were significant (P < 0.05) in the comparison of correlation
(rho) values against zero at the group level. This yielded a distribution of
correlation clusters (across frequencies) that could be expected by chance.
We tested whether the observed correlation cluster exceeded the 95th
percentile of this distribution.

In the phase clustering analysis, we generated a chance distribution of ERS
reductions by randomly shuffling the trial ID of hippocampal phase and ERS
signals 1,000 times. At each permutation, we recalculated ERS reductions
after the removal of ERS at specific phases and looked for the biggest cluster
of contiguous significant phase bins. Phase bins at the extremes of the cycle
were grouped into clusters when necessary, given the circular nature of the
data. Statistical significance was calculated by comparing the observed t
value with respect to this surrogate distribution.

Data Availability. Anonymized intracranial EEG data and custom-written
Matlab code supporting the findings of this study are available in Open
Science Framework at https://osf.io/j582a/.
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